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% ABSTRACT
This paper is concerned with the application of the Ritz-Galerkin |
method to the numerical solution of singular boundary value problems of the
9 type arising when Poisson's equation on a domain with cylindrical or spherical
symmetry is reduced to a one~dimensional problem. The objective is to derive
~f a priori L2 and L_-norm estimates for the error. The difficulty is that

¢ these norms are not natural norms for the reduced problem. With the aid of

B-splines we prove some nonstandard approximation - theoretic results and

y s ’ 3 ACCESS!?H ‘or
\\ use these to derive the desired error estimates. Some numerical results }— -
N NTIS Wite
1 -~
are presented. £os 8.t
LNANNOUNCTD

JUSTIFICATION
AMS (MOS) Subject Classifications: 65L10, 65N15, 65N30, 41A25

Key Words: Singular problems, Weighted spline projections, Rayleigh- BY ]
Ritz-Galerkin methods DISTRIBUTION, VAL ABE:
Work Unit Number 7 (Numerical Analysis) Dst. -
EXPLANATION
The Ritz-Galerkin (finite element) method is a widely-studied method gl

for obtaining numerical solutions to differential equations. Much is known
about the convergence behavior of the approximate solution when all the
coefficients in the differential equation are regular. This report investi-
gates the application of the method to boundary value problems in one space
dimension with a singular coefficient of the type which arises when symmetry
permits the reduction of a partial differential equation to an ordinary
differential equation. The basic result is that the singular coefficient does

not degrade the performance of the method. Some numerical examples are given.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and
the National Science Foundation under Grant No. MCS75-17385.




{ RITZ-GALERKIN METHODS FOR SINGULAR BOUNDARY VALUE PROBLEMS

Dennis Jespersen

§1. Introduction

When Poisson's equation =-Au = f is encountered on a domain with cylindrical or

e e AT S R P P SOme e e T

spherical symmetry, one can, if the data depend only on the radial coordinate, make a

change of variables to reduce the problem to a one-dimensional problem, albeit at the

expense of introducing a singularity in the equation. This report investigates the Ritz-

Galerkin process for numerically solving the one-dimensional reduced problem, with the
{}'~ objective of deriving optimal error bounds of the type normally encountered in finite

E Y element analysis.

In pursuing this work, the motivating idecas are roughly the following. Assuming

[ smooth data, the solution u to Poisson's cquation is smooth, hence is well-approximable 3
by piecewise polynomials. Onc would thus evpect a Ritz-Galerkin approximation to u
from a piecewise polynomial space to be "optimally" close to u. Unfortunately, the

singularity in the one-dimensional problem frustrates the usual analysis unless one

T
Ve

either adds to the finite-dimensional space functions which match the behavior of the

Green's function or makes estimates in a natural weighted Sobolev norm ([2], [13]).
There have becn some recent works that have made progress on this question. Dupont and
Wahlbin [10) analyzed the problem -(azu')' +qu~=f on (0,1) where q(x) > qo > 0

for 0 <x <1 and al(x) € C1[O,1]. They were able to show the Ritz-Galerkin process

produces an approximate solution uy which is optimally close to u in the L2(O,1)
norm. Their proof seems to depend strongly on the conditions a € Cllo,J] and q(x)
strictly positive. In another recent work, de Hoog and Weiss (7] have analyzed the
application of collocation methods to singular boundary value problems such as the ones

considered here. In a difficult piece of analysis they show that collocation gives,

roughly speaking, the same results for singular boundary valuc problems as for nonsingular

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and the National
Science Foundation under Grant No. MCS75~17385.
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problems (for which see [6] or [14)). Their results gave further impetus to the hope
that the Ritz-Galerkin method would give the same results for singular problems as for
nonsingular problems.

This paper divides into three parts. In section 2 we prove some results of a
purely approximation-theoretic naturc concerning the convergence of some weighted

pProjection operators. In section 3 these results are applied to give a priori error

estimates in L2 and L_ for the basic problem. Some of these results are extended

to nonlinecar problems in section 4, and some numerical examples are presented.

I would like to thank Carl de Boor for several very helpful conversations in the

course of this work.
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§2. Convergence of Weighted Projections

et 0 =x_ < x. < ¢oc < xN =1 be a partition of the interval I = (0,1). Define

0 1

I, := : : o AENL = X = s i

i (xx-l'xl)' h1 X, xl_l, h mix h1 For J an interval, let nk(a) denote
the set of polynomials of order k (degrce < k) on J. Let 0 < v <k -1 be integers.

h h v s v
Let S =S§ := {veH (I): v| € M (I.), 1 <i < N}, where H (I) denotes the
k,v Ii ) [ = =

usual Sobolev space of functions with v weak derivatives on I, equivalently, the
space of functions in Cv-l(I) with v(v-l) absolutely continuous and v(V) € L2(I).

3 +k
Define the sequence = (ti); = (xo,...,xo,xl,...,xl,...,xN,...,xN) where

xo, X are repeated k times and X, is repeated k - v times for 1 < i < N - 1.
N o e

It is well-known that sh has dimension n = N(k - v) + v, and a convenient basis

; . . n
consists of the normalized B-splines, ({B.}

C
i We have supp Bi c (ti'ti+k]' Bi(x) >0,

and Z: Bi(x) =1 for all x ¢ I. For thcse and other facts about B-splines, see,

€.g9. 15).
h : B
Ne pB.h LZ(I) »> §  via f x (u - PBu)¢ dx =0

; < ; h 2
for all ¢ € Sh. For B = 0, PBu is the L -projection of u onto S, and estimates
“

o ,
vy

Let B > 0. Define a map P

of the error |[u - P are well-known for p = 2 and p = «. Our objective is

gl
to derive a priori cstimates for |[lu - Pnu” L for B >0 and p = 2,x.
P
We will make the following assumption on the mesh: there are constants M > 0,

: S L
e s'wﬂ-wu':

Y > 1 independent of h such that
(2.1 x /%, SWEI/L) for 121z

Define the global mesh ratio by Mt = max (ti+

t g - ti)/(tjik - tj). We can now
i ’

k

state the main result of this section.

Theorem 2.1. (1) PB is bounded as a map on L2,

llegll , < coc,Bmy .
t2) P is bounded as a map on L+

e, <m/? « copmn .
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1 As an immediate corollary, we have

Corollary 2.2. (1) "PBu - | L S C(k,BMY) inf lu - u
2

u

il
h

! : 1/2 q :
4 (2) ”PBu =ull MST s cl By inf ||u - wll, if wer (.
5. h
The proof of the Corollary just uses the fact that PB is a projector, in addition
to Theorem 2.1.

F The proof of Theorem 2.1 will follow as a scquence of lemmas. The basic approach

is to write down the matrix representing the map P with respect to the B-spline

p 3
o < basis and then make some careful estimates on the matrix problem.
; S Lemma 2.3. The assumption (2.1) implics
"‘ (2.2) Big = C(M,y,k)tt-i for k+ ¥ <iz<h,
‘{ (2.3) LIV < el x ki (/) for Txd < j=n.
Proof. We have X, = ti(k-v)-»j for 1 S A< ENE=lE A v < ik, %y =t for

f . " 3 r = &% < % ol EE A A
123 < ki and Xy tN(k-v)*j for il A v. Hence t where

i~ *poi)
pi)y =N 1if n+ 1

i

A

i <n+k, p(i)
if k+ 1 <€i < n, where LJ denotes the greatest integer function. Thus

/t. = <MpG o+ KI/pGN).

| ti*k i xp(i+}:)/xp

(i)

For kK +1 < 4 <n -k we have

pti +x) _ Lla-1n/k-w]+1

p(i) L(i-v—l)/(k-v)Jfk”'
and for n < i +k < n+ k we have
p(i + k) - N e N o
p(i) [G-v-1/K-w<maxa,n-1 - **1-

"

Thus t., /t <Mk + 1))

14k C(M,Y,k), which proves (2.2).

Now consider (2.3). If i =1, tj!-k/ti+k o xj/x1 < RS

Stk T Xp e X ik S MPGARAG Y < MG 14 k- w76 -1 i x /Y

which proves (2.3) with C(M,y,k) = M(1 + k).

0 if 1 <ic<k, and p(i) = (i = v - 1)/(k - V)]
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Lemma 2.4. For 1 < i <n,
(2.4) <78 telax > cMuyik.BlE | B, (x)dx
' i L =l kaRab S e ¢ S 2
Proof. For k + 1 <1i <n, we have
B 8 5 B B -8 B
[y 260 [ By = cegre, 07 e, [ B 2 ety el [ 8

by (2-2)<

8 *1 8 Yiek 8
For L<isk, [x By = [ xB, + [ xB;. On [0,x,], B, is a polynomial
0 = X,

of order k. By the equivalence of all norms on a finite-dimensional space,

% ‘ =
B B8
[ xB >couex) [ B .
0 " 0
Hence
X t
1 itk ;
B " B B
[ <", > coxp)x) [ B+ b f B, %
0 X :
1
> min(1,C(k,8)) - x° [ B 3
= : : ] i

. B, B
CHk BY ke oty Ve L f By

' -8-—BY B
> C'(k,B) CMy, k) 1 e f By
2,8 ety kTPl [ 4

. B
CM YK B / B,

a g » 2 c
Lemma 2.5. For 1 < i < n, there exists fi,8€ Ly(l) with supp £, S [t )
|| £ lL € CULY R B, o =0 T and / «PE, - tx)B, (i)dx = § for 1 < 3j < n.
i,B g L i+k i itk i,B 2] ij - e 1
Proof. By (4], we must construct fi g so that xefi B(x) = f(k)(x) where i
’ ’

(k) ¢
f [ Lw(ti'ti+k) with

0 k-fold at ti
(2.5) f = (0 at all tje (t0t,,)

- o= - ) - - 1) .
v, k-fold at t . (b (8) := (£ =t ) (¢ =t )/ =10
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If ti > 0 we can simply use the construction in [4] and get the bound

= -8 (k)

s
E tEBDk(ti+k T

- (ti+k/ti)BDkt;fk(ti+k ) ti)_l
:_C(M,Y,R,B)Dkt;fk(ti+k - ti)'1 :

If ti = 0 a slightly different construction suffices. Let 6 := ti+k/4’ and

let G# be defined by

0 for x < §

IA

G#(x)

v

it for x > 36
(x - 8)/28 for & < x < 38

ket ¢ 6 Cw(lu with supp ¢

>
1N

(-1,1), v >0, f¢ =1. For any € >0, 1let
wg(x) = ¢ (x/€).

Now let € = 8/2 and let G = G“ * ve' TGy GiR) = f G#(y)wc(x - y)dy. Then

Ge C (R with G(x) =0 for x<¢, G(x) =1 for x> % s
(3) s TR (3) ) (3) -J
We have IG ., (x)| iShe . ”G IlL ||¢ v ” L € “w i |]L = € JMj. Let

© il 1
f(x) := G(x)y (x). Then f satisfics (2.5). Let £, g0 = v ey, o extinate
’
"fi,BIILw' we note that fi.B(x) =0 for x < g, hence

k g ;
e, g0l < i (’j‘)lwi"‘ o 1163 o0 |
' 3=0

-B

Kk
8 (k) ISl =g
R Y j§0 51 Fiak® M

A

_6 =
CARIBIC o Caan = 5

and the proof is complete.

For wu(x) given, PBu =z aiBi is obtained by solving the linear system

(2-6) Gog =

ne

’

dode ot

PPEpom—

p——

et i | i o it it & .




B [ < ~ B 1/2
G . = B.B.d . = B.dx. =
where ( O)iJ f x'B, 3 X, u, f X uB, dx Define Bi Bi/(f x Bi) 0
gt B 1/2 3 B~ =~ ik A .
D := dlag((f x Bi) )y (GB)ij 3= f x BiBjdx. Then DGBD = GO' so Gog =u is
equivalent to Qs (D§IG;1D)D—22. But we have
b =2
legull | =Nz e Il | <llall, ana lIo7%ll, <l -
«© o ©o
Hence
cal ol
w2 P < ||D 5
(2.7) lIPgull i <l s oll,, llull e
Lemma 2.6. There exists a constant KO = KO(M,Y,k,B) such that for all a = (ai)?,
(2.8) Ko llall 5 <llsgall , <llall ,
Proof. Given a, let a = ) aiﬁi' Then, since
2 NG
a, ()" = (X aB (x)/(f xB)
2 B
<z aiBi(x)/f x Bi '
we have
gTGBg = f xsah(x)zdx L5 af = ng -
Since CB is symmetric positive definite, this yields the upper bound in (2.7).
For the lower bound, take a = (ai), and again let ah =k aiéi' By Lemma 2.5,
we have
t
i+k
B ~1/2 s _
(f X Bi) a; = f x fi'ﬁ(x)ah(x)dx,
t.
i
and hence
t t
i+k itk
B i 2 =2 =28 B B 2
< ’ - i : . g . g
(f X Bi) ay < C(M,Y,k,B) (ti+k Li) tik f x"dx f X ah(x) dx
. €.
i i
t
itk
2 =1 =g B 2
SCMY kBT -t T { x'a (x)“ax .
i

Thus




1 .
! itk

| 2 2 -1 _-B 8
< = . <
ai a C(MlYlle) (tl"’k tl) tl"’k f X Bldx {: X

‘ i
B
| t

itk

2 =1

: cctyo®m® -k [ wPa oo%ax
¢ t,

i
b

since ] Bi = (ti+k = ti)/k. A summation on i gives

T

a <ctyk,®? [ xPa o%ax = cony ke 2"

ne

which gives the lower bound in (2.8).

g2

Bah(x)zdx

’

is a band matrix satisfying

then the entries of

that there exist

Now, Demko [8] proved the following result. If A
E s kllgll g <llagll , < Rllyll | for sone 1 <q <= ana k> o,
; ﬁf A’l o (uij) decay cxponentially away from the diagonal, in the sense
constants C > 0 and A € (0,1) depending only on K, K and the bandwidth of A

such that Iaij[ < CA|1~JI. This result combined with (2.8) allows

us to conclude the

i existence of constants C > 0, X € (0,1), both depending only on M,y,k,B8, such that
i
i -1 et
(2.9) (s )ijl < e #
! -1 -1
We can use (2.9) to estimate [|D Gy [ . Indeed,
-1 -1 = B . -1/2 -1 B .1/
Lo eg oyl = T <8 Fegh () Rl
< CAIJ"JI(I xBBj)l/Z(f xBRi)_l/z
|i-3] R/2 5 ¥ -1/2 -R/2 . -1/2
< cA ik Eak 7 85 c(M,y,k,B) g 28
- B/2, |i-3]
<€ Mg (tj+k/ti+k) A -
: Thus
n i : n :
-1 -1 /2 -3 ., YB/2, |i-
1 1o %6y, | < oMt/ el T ey, P 2(5/4)78 a3l
= B Ly = " Tt e
i=1 = j=1 J=i+l

em/Zea - 0™ v cony k8

CM1/2 -

A
lier

—8_




i
i
;
;
¢

and hence

i 5 n -1 -1 1/2
|Ip Gg ol = sup .Z | (o Gy D)ijl a2

i j=1 &

’

where C depends only on M,Y,k,B. With (2.7), this implies the second conclusion

of Theorem 2.1.

For the L2 bound, we write the matrix problem (2.6) slightly differently. Let

2
7 835)1/2).

A := diag((] Bi)l 2), E := diag((f X Then we have

2 2 2 2
lIpgull e faousi®sz of [ B =llaclly

and
t, 1/2
i+k
| & 1g)il = | xBuBi)(f xszi)—l/zl < (f uz) :
=
SO
=1 2 2
e "ull 5 < x [Jull
=l 5 L,
Now, Gog = is equivalent to Ag = (AGBIE)E—lg, so
: -1 -1 -1 172
(2.10) ||P8u||L2 <llaall , < llas] el e ull , < llacy"ell &< [lull 5
But AG;IE = AD-lG;lD_lE = (AD_nglDA—l)(AD—zu), so
“1 oy "oy oy -2
(2.11) ”AGO E||2 < |l (0A™) Gg DA ll2 [lAD E||2 :

We can estimate cach of the latter two quantities. Indecd,

=2 3 = 282 . 1/2
a0 %E = aiag((f Bi)l/z(f xBBi) S e
so
; -2 1/2 -1 -8 -1.8 1/2
(2.12) oo™kl , < max (f B “cou,v,x,8) Yoeld B 4] By
1<i<n
=%
< CM,v,k,8B) .
Now we prove a final lemma.
Lemma 2.7. Let A be an n X n matrix whose inverse A—l = (uij) satisfies

Iaijl < CXII-J' where ¢ > 0, 0 < A < 1. Let D= diag(di) satisfy di > 0 for




,
i
i
i

" 3 et A AT A RS P eSS o e 2

l1<i<n and

K W Il o) g5
4a./d, < % 5
* RIS £ S
=) X
Then B := D "A "D satisfies l|B||2 < C(c,X,K,m).
n s =i
Proof. Take x = (x.),. We have (Bx). = Z (6 Geli(s Lo e o
—_— = 3500 Sat j=1 1) 1] 3
n n
flexll 2= § (] dlld.aijx.)z
i=l j=1 Rt
o 2.2 2
4. d;
=1 (L a7l <j£l| R
For each fixed i, we have
n i n
L afle han® | o fedir® 7 0
= Sl R SR R =i+l 1]
i G . n h 5
<Ko |} el G ) j2mAll—3|
j=1 j=itl
< ch(l —A)~l * %% = C(m,A)
= C'(c,A,K,m)
Hence
llexll 2 < et erkm 37 fa |2
23 e i j 1] )
B g B
= C'(c,A,K,m) Z % Z Iui.l
j=1 7 i) J

IA

S ek Rat) < e~ 200 <X ] x§

2
Clekem x5

which completes the proof.

To apply the Lemma, we note that

o PRI =172, B (172
a5y = (f B f x'B))

«]0w

‘ _ — .. -,




R S

s

‘,!
|

and hence
-1 -1 = -1/2 BIN70 B .-1/2 1/2
(DA™7) ;. /(D870 = (f B,) (J x B,) J x'B) B

B/2 -8/2

s tj+k C(M,k,wr,B)ti+k
CM,k,y,R) if 1 <3 <i

<

T heoiy s @™ e 225 < .

By Lemma 2.7, || (o™} 1g pa”Y|

this implies

3Ll

8 5, S CMMK,B,Y). By (2.10),

lPgull | < conxpm flull |
2 , 2

which completes the proof of Theorem 2.1.

-11-
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A Ritz-Galerkin Method

2

Consider the model problem, where a >1,

a
(3.1) -u"(x) - o u'(x) = £f(x) on (0,1) ,
u(l) = 0, u'(0) =0 .
Such an equation arises, with « = n - 1, when one changes variables in a rota-

tionally symmetric Poisson's equation in R". Let us write (3.1) in the form

(3.2) -x"un' = x% on (0,1) ,
u(l) = 0, u'(0) =0 .
1 > 2 2
et 0 <a <b. Define H_(a,b) :={ve L(a,b) : [ x (v + (v)%)ax < =),
a

H;(a,b) = H;(a,b) N {ve c(a,b] : v(b) = 0}. We will have need of the following

Poincare-type inequality.

°1 2 (2.
Lemma 3.1. Let v € Hu(a,b). Then leu/ v” L2(a,b) = 21(bE =a) ”xu v ” Lz(a,b)'
Proof. We have, integrating by parts,
& a 2 2 atl a+l
] xvinfax = - —=—= [ “" - a" v (x)ax
5 W N
a a
2 a/2 +1 atl. =a/2. .
et L (@, I B e e L, (a,b)
2 2
2 a/2 atl a+l, -a a2
Sy el L, (a,b) e - am | L_(a,b) (E| I, (a,b)
2 a+l a+l  -a j_a/2 a/2
o bl TS de b L, (a,b) fi L, (a,b)
An elementary computation shows (ba+1 - ,;\m'l)b—(1 < (a+ 1)(bi~- a) 1f a > 0,

while if a = 0 the upper bound is trivial. Thus the lemma holds. A more gcneral

version of this result may be found in [2].

1
1/2 §
For wu,v € Hl(l), define (u,v)_ := f xau'v'dx, ”Ull‘ 1= (u,u),/ . Consider
a E 0 E E
the following problem.
°1 4 4 a

Problem (P). Find u € Ha(I) such that for all v € Hu(l), (u,v)E = f x f(x)v(x)dx.

0

-12-
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Let us assume that x

fe L2(I). It is easy to show that a unique solution u

: a
to Problem (P) exists and that llullE <2 || x /2f||L 2
2

We ‘now define the finite-dimensional problem. Let 0 = X, < x1 < see < xN =1

be any partition of I, and let Sh = 52 3 be defined as in §2, with 1 fv< k=13,
’

°

Tae 20 = {¢ € o s ¢ (1) = 0}, and consider the following problem.
°h °h 3 a
d . S 3 = X .

Problem (Ph) Find uy € S such that for all WG 5 (uh vh)E f X f(x)vh(x)dx

It is again easy to show a unique solution uy exists and is characterized by

u L "
X = - = = 'dx =
(3.3) (u v, vh)E f x (u uh) vpdx =0
°h
for all vh € S, equivalently
(3.4) ||u = uhllB = 1ngh ”u = vh”E '
v €S
h
; 2 i oz
where u is the solution to Problem (P). Since llvHE = Hxa/ v'” L’ (3.4) indicates
2

the natural norms in this problem are the weighted L2 norms. We will pursue this a

little further and show how Nitsche's trick carrics through. We need two lemmas.

< M(Gi/1)Y for 1< i< 3. Then

Lemma 3.2. Assume the partition (xi) satisfies xj/xj

there exists a C = C(M,y,a,k) such that for all 2z € Hi(l),

(3.5) ine 5™ % ~ il < ch [|x*%2+ || i
h h =2
z)fs

L (1)
! 2

L2(I)

Proof. Given 2z, we construct z, in two stages. For the firet stage define a step

function C(x) by f(x) = z(xi) for xi_1 <% < xi. 1 <i<N, and [(0) = c(xl).
y 1 : ; . ;
This makes sense because z € HQ(I) implies 2z 1is continuous on (0,1).
Now, for 1 < m < N we have

2

”xa/z(z -0l LZ(Im) = { X" (z(x) = z(xm))zdx

m
; ; i . 1 . .
The integrand z(x) - z(xm) is a function in Hu(Im) which vanishes at L By

; 2 :
Lemma 3.1, the integral is bounded by 4(x - xm 1) f x“z'(x)zdx. Summing from m = 1
o =
1
to N establishes the inequality =

L

(3.6) 1%z - ol < 20 ||« 22|
2 2

~13-
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The second stage of the construction involves finding a smoother approximation

) e
zh to the step function . Let zh s Zi=1 c(ti)Bi. Then for any x € I,
n
- = = I
Bx) = g () = ] ATle) = GtEIIB () :
i=1
Suppose x € Il. Then, since Bi =0 on Il for i > k, we have
k
B0 =g ) = - (RlE) - E(E)IB. (0
1i=1
k
= ] (z(x,) - z(x,))B, (x)
i=q 1 1 X |
= 0. |
= o i
Now suppose m > 1 and X € = (xm_l,xm) (t(m-l)(k—\')+k'tm(k—v)+1+v)' Then ,'3
B, (x) 0 iff i = (m-1)(k=-v) +1<icmk=-v) +v=:i. Hence 1
4
i i ;
Glx) - 2,60 = ] (&) - ple 0B ) = ] (=l ) - gt ))B (=) §
i=i i=1 |
L L |
|
For each 1 1in the range of summation we have L(ti) = z(xj) for some j, f,

j>max(l,m+1-Kk)=: jm. Hence

x, >x%x. >0),

j 1 so we get

X
m m
lzx ) - seepl < L I S
X.

Hence for x € Im,

1 (T(x) - zh(x))2

N
—~
%
~
l
Y
—
+
—
i

X

n
f z'(s)ds (the integral exists because
x

3

X.
7 J
3
ig 5 |
13; (2(x) - t(t,)7B, (x) |
' !
iR xm a 2 xm -a '
z (f s 2'(s)"ds) - (] s ds)B, (x) |
=i X, x. - |
L 3 4
i |
SR E R TT g Me A
]m m m m 1—11,
”su/zz'” i (%, % )M(m/j 1%« xn
2 jm' m n
15 % || 2 Mk - kh .

L (%, +%)
3, ™
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Integrating over Iln yields

a/2 2 ay .2 a/2 2
™ St il ) o ST e* Sl L L
2 m 2793 m
m
Summing over m gives
quzhz “xu/zz'lli ’
2

a/2 2
™ “e - 2l < mx
e
which, combined with (3.6), finishes the proof.
X
Lemma 3.3. Let f € L2(I), and define g via g(x) = x : f f(t)dt. Then g € L2(I),
0
ana llsll, <2l -
2 2
Proof. Sec [9, p. 532] or [11, p. 240].
We now show how Nitsche's trick works in our situation. Let u be the solution
of Problem (P), uy the solution of Problem (Ph). and assume xj/xi < M(j/i)Y for

1 <i < j. Then we have

Lemma 3.4. Iba/z(u = uh)III < ¢hllu - uh||E, where C = C(M,y,a,k).
‘2

Proof. Let e(x) := u(x) - uh(x). Let 2z(x) solve —(xuz')' = x% on I,

z(1) = 2'(0) = 0. Then

1

(3.7) (z,v). = | x%e(x)v(x)dx
E 0

o
for all v ¢ Hi(l). For x € I we have the formula
1 t
-a a
(3.8) z(x) = | t [ s e(s)dsdt .
X 0

Differentiating (3.8) twice yields

X
xa/zz"(x) = ax_l f (s/x)a/zsa/ze(s)ds < xa/ze(x)
0
a/2
and hence, by Lemma (3.3), x 2" e L2(I) and
2
(3.9) [x%22n . < t2a + 1) || %]] . .
) L
2 2
°h
Now, by (3.3) and (3.7) we have for all zh € S,
-15-
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(3.10) "xu/ze"i = (z,e)
2
= (z - z.e),
< llell gl - 2.0l
/2
= llell g 12 - 2011, -
2
Note that the space (gh)' - {v' 1 v ¢ 8%} is exactly equal to the space sh -
h h ‘ k-1,v-1
Furthermore, it is easy to see from (3.8) that z' ¢ H:(I). Thus we may apply Lemma 3.2
to find a function ;h € S:—l,v-l (and hence a zh € gh with zﬂ = Ch) such that
a/2 2 2,
(3.11) |Ix (2* = zﬁ)lle = ”xu/ (2= ch)lle < C(M,y,u,k)hllxa/ z"|| L2 .

The relations (3.9), (3.10) and (3.11) yield the result.

The argument contained in Lemma 3.4 obviously gives an error bound of the form

a/zfll ; thus we have estimates for

1%/ ¢
L2

lla - ull, < cnllx
Hx2

A (] 4
u uh)” L an
u - uh)“I . It is more interesting to consider the quantity [|u - uh" L for
' i
p=2 and p ==, as an a priori bound on these would ensure the error could not be
badly behaved at x = 0, at least for reasonably smooth u. Our first step is to

bound u' - uﬂ.
Theorem 3.5. Assume the partition (xi) satisfies xj/xi < M(j/i)Y for 1 < < g,

M >0, Y >1. Then there exists a C = C(M,Y,a,k) > 0 such that

(3.12) [lut - u;]” ;. 3¢ infl [l - "QHL ;
2 vhes'
and
(3.13) [y 3 CM;/Z infh ot = v 5 v
= ViES

where Mt is the global mesh ratio defined after (2.1).

h ; a h
Proof. Let P : L,(1) s . via £ X (w = Pow)vdx = 0 for all vy €S\ .

h
k=1,v-1'

o
Since Sh)' =S (3.3) implies uﬁ = Pa(u'). Thus




2 - s P R P, I 41

{ u' - ui = (I - Pu)u'

C o Pu)(u' = Vﬂ)

23 , for all vh € Sh. Hence for p = 2,», Theorem 2.1 gives

2 o = wlly, <llz = el sne fht - il
¢ P v, €S P

"
IA

@ +llpll ) ane Jlat - wpll

B S
i Vhf
1.1
2 p
< i . = L]
i CMg 1n£ ”u vhllL '
. | vhes P
f'.‘
A W and the proof is complete.
-4 Corollary 3.6. (a) If u € HJ(I) where 1 < j < k, then
i et alll, e T MY
2 2
(b) If ue w3’°(1) = {v : v,v',...,v(J) € Lw(I)} where 1 < j < k, then

1/2. j-1 (3)
e

S —

u' - u' < CM
o = wll,

Proof. The Corollary is an immediate consequence of (3.12), (3.13) and well-known

approximation properties of the spaces (see, e.qg., [16]).

sk,v
We now use an argument like that of Lemma 3.4 to give an a priori bound on

o = w I -
Bl L

Theorem 3.7. Under the hypotheses of Theorem 3.5, there exists a constant

C=CM,y,a,k) > 0 such that

] (3.14) o =wll, cenflat -upll, -
3 2 2
Proof. Let e(x) := u(x) - uh(x), and let 2z(x) solve -(xaz')' =e on (0,1),
- 2(1) = 0. The boundary condition to impose at 0 is lim xuz'(x) = 0. Then there is
x40+
a unique solution 2z, given by
P IS, -
(3.15) z(x) = [ ¢%f e(s)as .
x 0
4
i -17-
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Differentiating twice and using Lemma 3.3, we find xaz" € L2(I) and

leuz"” < (2a + 1) llel] , . Now,
e b

”e“ £ = ! (XuZ').e = f xaz'e' = j xa(zi - ze"'
k) h

o
h ; ; 2 ;
for all zh € S, using integration by parts and (3.3). By Lemma 3.2, there is a
-
1
z, € s* with ||=%z"

) || L, < ch [|x"z" | BT C(M,y,a,k). Thus

|A

lell 7 < Nzt =2l Metll, < enllx2"ll  lle'll
L, nl L, L, L, L,

| A

ch(2a + 1) [lell . He'll . -
L, L

Corollary 3.8. If wu € HJ(I) where 1 < j < k, then ”u =/ ll < ch? Hu(J)“ '
== BB, = L,
so we have an optimal convergence rate in Lz.
The Corollary is an immediate consequence of (3.14) and Lenma 3.6.

We now turn to the more delicate matter of obtaining an estimate for ”u = uh”

To begin, let =z € (0,1) and let G(x) = Gz(x) be the Green's function for (3.1),
J=a
z =1, 0<% < 2z log 1/z, 0 < x < z
(3.16) G(x) = 1-a (e 5 1), G(x) = (¢ = 1)
X =iz S xSl log 1/x, z < x <1
°h
Then for all Gh € 8
4 [\
e(z) = I x G'(x)e' (x)dx
0
> a
= [ x"(G6'(x) - G (x))e' (x)dx ,
h
0
so
- a
(3.17) lez) | <lle'll | int [ x'[6'(x) - Gy (x) |ax .
o
“ g es

h
We have Theorem 3.5 to bound the first factor here, so our goal is to bound the

second factor. Our method will be to construct a suitable "interpolant" of G. The

-18-
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next theorem gives the result. First let us define, for a given partition

0= xo < xl AN xN =1 and k+1<r <N,
¢ N
1-k k
(3.18) Sr 1= jg xj—k max(xj - xj-k' xj+k—1 xj—l) G
where xj - - 1 for 3j > N. Note that if xj = (j/N)Y, then
Y-k<-1= 5 <clhkyn -k
Y-k=-1=>5_<Clkyh'|logt/(r - k)|

_,C(k,Y)hk—l :

-
I
.
v
1
—
I
v
0
A

Theorem 3.9. Let

Ea=1

<z sxg (1 <J <N) and let G(x) = Gz(x) be the Green's

function given in (3.16). Assume the mesh satisfies xj/xi §_M(j/i)Y, lx 4 < 5. Then

there exists a constant C = C(M,k,a,Y) > 0 such that

1
3 (e o o e

(3.19) 1n£h é X [G'(x) = G (x)[ax < CM,kia,y) (h + S ) .

GhES
In particular, if the mesh is quasi-uniform (i.e., xj = xj_1 Sophtifeor )< g = N,
so Y =1), then

1 5 h loq(l/xJ), k =2
(3.20) inf [ x"|6'(x) - Gp (x) [ax < Cluk,a)

°
Ghesh 9 h fa e e I3

, ©
Corollary 3.10. If u€ W)’ (I) where 1 < j <k, then

1/2 3
t (h

"e” L < C(M,k,a,Y)M + hj-lsk*l) “u(])”L . In particular,. if the mesh is quasi-
o 0
uniform then
(3) hjllog h], k =2
llell, < conxa ), - :
' © J
h ¢ k>3
Corollary 3.10 follows immediately from Corollary 3.6, (3.17), and Theorem 3.9.
Its content is that we have an optimal rate of convergence in L_ except for the case
k = 2 of piecewise linear trial functions Sh. This is the same result as found in

[15). An example will be presented later to show the |log hI factor cannot be removed

if k = 2. First we prove Theorem 3.9.

=19~
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Proof of Theorem 3.9. The proof is somewhat lengthy, but straightforward. We construct

: h
amap T : L1 b such that Tf(x) depends only on the values of f in a neighborhood

of x, i.e., T is local. Then we let Gh = TG. Now, G consists of two smooth
pieces joined together continuously at z. Hence the problem of estimating G'(x) —Cé(x)
can be divided into three cases, depending on whether x is sufficiently far to the

left of 2z, sufficiently far to the right of 2z, or in the vicinity of z. The

estimates for these cases are combined to yield the result.
€t
= itk
i ) A (=) (1 it = c =
To begin, let { i}l L with Aig { fig dx, XiBj éij and

i
=
f- - H Suc I.. S o b S AC i Sed
“ 1“ b §_Dk(ti+k ti) i such function fj are constructed in [4] and are used

in Lemma 2.5 above.

n
For f € Ll' define Tf = X (A, f)B,. Then T maps LJ to Sh. We would put
- R
; 2h ; = =
Gh = TG except we reguire Gh € S . Thus, define Gh = TG, Gh = Gh = (RnG)Bn. Because
o
Bi(l) =0 for 1 < i <mn, we have Gh € Sh. Now,
(3.21) D= e - eoll <llx®c -&nll, +[x"G - el
h Ly, = h L h h L
1 1
Let us note for future refercence the inequality
(3.22) [ lsjoalax < 2,

which follows from the cquality (sce (4.6) of [5])

k -1 k -1
Bl = SE R e
L TR e T O T

? ; 4 . Ef Y : ;
expressing the derivative of the i i B-spline of order k in terms of B-splines of
order k - 1.

We can easily ectimate the sccond integral on the right hand side of (3.21). For,

>~ %

n

(A G)B and
n n

tn*k
el = 1|/ £,(:0Gxdx[ < b Gt )

t
n

But t = x > 1 - h and thus
n N=1 -

=20~
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G(tn) < < C(a)h .
10g(l/tn), a =1

Thus |AnG| < C(a,k)h, and so

&= ' a '
(3.23) | x @ - Gh)HLl =[x IAnG||Bn(x)|dx < 2¢(a,k)h

Now comes the task of estimating the other term on the right hand side of (3.21).

For fixed x and f sufficiently smooth, we have f(s) = P(s) + Rx(s), where

k-1 i)
P(s) := z sy ~ x)lf(l)(x)/r!. It is clear from the definition Tf = Z(Xif)Bi and

r=0
the fact that AiBj = éij that T preserves polynomials of order k, hence

- ' = " - . = . = ' .
(Tf - £)'(x) = (TR, - R)'(x) = (TR (x) g (R IB! (x) ,

SO

(G, - G (x) = E (AR B} (x)

where Rx(s) is G minus its Taylor polynomial expansion at the point x (which
exists for x F z).

Suppose x € Im with m < J - k. (Recall =z € I_.) Then, with

J
iR t= (m - 1)(k - v) + kK and i1 = (m =210k = V) F Ly,
i.
& R
o = GyYex) = A.R IB'(x) ,
(3.24) (G, - 6" (x) i_zi (AR IBY (%)
L
; A o : : S , L h
since s:pp Bi lm ¢ if and only if L. 2 i<ig. For i < ips
itk
AR = f f.(s)R (s)ds = 0 since R (s) =0 for x <2z and s < z. Thus
ix " i X x
3

(Eh -G)'=0 on Im for m < J - k, which is the result for x sufficicntly far
to the left of z.

Now suppose x € Im with m > J + k. Again we have (3.24). Furthermore, for

-21-




! ¥ k-1 (k)
(3.25) sup IR ()] = sup If x -8 "6 ()at/x - 1)1|
<g< . <g<t: S
ti~§:xi+k ti_s_ti'k
X
1-a-k k-1
< Cla.kit, sup | (x - &) “ag]
<s<t
L T O
1-a-k
< Cla,k)t, " max(x - t. .t SRR
| = i m 3 i_+k m-1
, i L
- Soel=ask k
< L(a,k)xm_k max(xm xm-k'xm+k—l xm—l) ,
k) . 1-a-k
since G &) = ¢ f: & R .
since (49 (k'” and t.\ 2 xm-k' ti e < xm+k-l
P i R
o Hence for jL Sl jR'
[ - (
! itk
X = £ (s s)ds
> | inl |{ {(SIR (8)d |
4 : 1
¢ 1-a-k k
<DL =@ 135 ¢ - -
Sy (a, )\m*k nnx(x]n X ok k1 xm—l) i
and so
i
4 8 - 4 a
{ (3.26) Jox'ler = Gtjan 2 3 IR | S o lBear[ax
{ 1 i i 1 i
m L m
a l-a-k k
< C(a,k < ax - x -
ol )xmxm~k m1>(xm ym—k'xm+k—l xm-l)
< C(M,k,a )'l_k max ( S x' = X )k
- GG RR oA m-k " “mtk-1 m-1 g
where we used the mesh hypotliesis xm/xm_k < M(m/(m - k))Y.

Summing (3.26) for J + k <m <N gives

1
n -
(3.27) / x'|6' = G lax < cok,a,ms,

% kK
J+k-1

which is the result for x sufficiently far to the right of =z.
Finally we must consider the intermediate case x € Im' d=k<m< I+ K.

G, (x) - G(x) =} (A GIB, (%) = G(z) + G(z) = G(x)
£

=} A (6 - G(z))B, (x) 4 G(z) - G(x) ,
i

-22-
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and thus

| =
i (3.28) [ x%|G -ctfax < ] A6 -cn] [ s¥[Bjxfax + [ %6’ (x)|ax
L . - I i I I
m m m
I 1R a
< ALUG = G . +
i < 12 | 1( (z))[xm 2 Cah 0
| L
|
k where iL, iR are defined as before.
! S :
‘A o For 1L SIS lR’
]
i Lok
}. A, (6 - Gzn| = |f £.(s) (G(s) - G(z))ds
®| i i
k ti
8
£ : itk
¢ =Rf £,(s)(G(s) - G(z))ds
L ] 2
‘ 1 -1 - 2
< - =
4 < Dk(ti+k ti) c, 2 Iti+k z|
< clk,a)hz
and thus
i b
| <
(3.29) 2 ) |h G -G |x® < ck,a)hx /2
& i m - m
L
E -z xl (i.e., J > 2), we have
a a
(x /2) = (x5, 1/%5,) 2 CM,a,Y)
and hence (3.29) is bounded by C(M,k,a,y)h. This coupled with (3.28) proves (3.19)
in the case z > xl.
| Finally, suppose 0 < z < xl. In this case define
I % G(x), x] SRl
| G(x) =
G(xl), 0 < x < Xy
By all that has gone before,
1 i
(3.30) inf [ x |6' - G'|dx < c(M,k,a,y)(h + S _ )
. h - k+1
Grqh °
he ¢

o ANy

-23-
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Also,
k a ] xl o
(3.31) ] x%let -G'lax < [ x%c x%ax < ch
: 0 0 # G

Combining (3.30) and (3.31) proves (3.19) in the case 0 < z < xl, and thus
Theorem 3.9 is proven. It may be worthwhile to note that letting =z » 0+ proves that

(3.19) holds even for 2z = 0.

Example. Here is an example that shows the |]og hl factor cannot be removed from
the upper bound of Corollary 3.10 if k = 2. Let xj = §/Nz 0 < 3 SN, h = N—l,
k=2, ulx) = 1 = x2. Let uj i= uh(xj), 0:i< 3 < N. Then uh(x) is given by (3.3),
1 o
f xa(u = ) Veldx = @ for all ‘v, € Sh 5
h h h

0

and w._= 6. For v we may choose a function such that v' =1 on 1., v! = 0 off
N h h Jj h

Ij' (The fact there is only one boundary condition to impose on vh makes this

possible.) Doing so we find

an, —u__1 o
f % ~J-}~~l— dx = f x (=2x)dx ,
i . Tl
) J
and hence
= 042 ’ a+?2
b S IO (5 Y 0 S el O Rt
h a + 2 Latl : atl
3 =Gl =)
.a+2 ‘o 12
u =St 2 = : }2 lﬁ = (l.l,Lﬁi“.
= 02 atl y atl
- 2 i Gl = )
Since u“ = 0, we see
¥+ +
o A o i T A
w wglily? 1y
n a + s ot

In particular,
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Pt 2 Q2 ] afa + 2 el - i
uo 2 + 2 h z [ (J - =) + —_) (J -3 > O(j 2)] 3

e a + 1 2 12(a + 1) 2
N 2 N -1
1 ah
ral ) G-l ] d-3 held
i . 2
< J—l J=1

2
1+ %— |10g h| + o(h?)

2
u(0) + % l10g h| + o(n?) ,

£ so ”“h s, “”L & ch2|log h|, and Corollary 3.10 is sharp. E
3 ©
.
=
F 4
2
:
a
g
2 -
;
1
1
!
4
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§4. Extensions and Numerical Results
Y The purpose of this section is to extend the results of the previous section to
o nonlinear equations. Our results will not be as complete or satisfying as those of
§2 and §£3; in particular, we will assume 1 < a < 2 and will not obtain L error
estimates. VFinally, we will show some numerical results.
We begin with a Jemma which will be useful later.
' Lemma 4.1. Suppose xl i'clh as h * 0 where ¢y > 0 is independent of h. Then
. .h h
there exists a constant C = C(k,cl) such that for any a >1 and any ¢y ¢ § = sk U
'
4 i (<1 2 a : 2
. (4.1) [ % %ax > ke [ oex)%ax .
" - 1
: 0 0
& X x
8 h 2 a 2 i i .
Proof. For any ¥ €.S5+, f xav(x) dx > ckx1 f ¢ (%) dx since ¢ 1is a polynomial
1 9 0 (o}
¢
x of order k on lO,xl] and all norms are equivalent on a finite-dimensional space. Thus b
: »
1
* a 2 o2 - a 2
§ f x -_—J X ¢ 4 / X .
1 0 [¢]
: i
pe X
: 11
. L@ f .2 e xa ] . ‘2
; e R i
* 0
1
1
] [ a 2
> Clm]n(],ck”l f ¢

0

As a first step to the nonlinecar problem we investigate the effect of lower order

do it b by s s ann

terms on the linear problem. Consider the cquation

(4.2) —(xnu')' + xuq(x)n = x“f(x) o (0,1)
uf(l) = 6, uw'(0) =0
The equation (4.2) comes from -u" - E u' + qu = f after nultiplication by x . We

o
scek an approximation ”h 4 Sh of u as the solution of

1 1 1 o
(4.3) f x"0tvrdx + f x"'qu v dx = f xfv. dx for all v _e Sh '
0 h'h 0 h h 0 h h

=26~
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equivalently,

1 1 '
4 (4.4) / x*(u' - U)vridx + I x’q(u - U )v dx = 0 for all v _e S .
; _ A h''h o n'Vh h

Let us make the following assumptions.

(4.5) There are o >0, 9 > 0 such that (c0 = I)Xg s 9 2 q(x) <09 for all

x € [0,1]), where X; is the smallest positive eigenvalue of the problem

-(xuv')' = szuv on (0,1), v(1) =0

I

v'(0).

(4.6) There are constants c1 >0, M>0, vy >1 such that x1 > Clh and

X /x; < MG/4)Y for 1< i o< 3.

.
e UUTEEUIUR———

s By (4.5), unique solutions u to (4.2) and Uh to (4.3) exist.
s i 1

(3 Let u, € ;h be given by f xa(u, - u')v'dx = 0 for all v, € ;h Section 3
o h hi th h .

< gives us estimates on “u = uh” in various norms, hence to estimate ||u = Uhll in
those norms it suffices to bound ”uh = Uh” 2

The equations defining uh and Uh may be combined to yicld

1 1 1
a (. [ ' a = = a =
(4.7) f x (u Uh)vhdx 4 g x q(uh Uh)vhdx g X q(uh u)vhdx

o ©

d for all v € S .
h

o
We also note that for v € "a(I)'

a ! \ 2 2
(4.8) f X v 2 + f xaqu 2 f x%v 4 2 (co = ]))\0 f xv j
]
) ) 2 i
> f xv @ TN (o= ])A; f xv
L] 1
3~j x'v 5 & = 1) ] Xy .
@ 2
3 sefxv ",
where ¢ := min(copl), and also
a '2 o 2 2 a 2
(4.9) R AR e AR N
We now state the main results for the estimation of W - Uh.

Theorem 4.1. Under the precedirg assumptions, we have

a/2

2
(4.10) 152w, = v | ' ! I, = v ll g < Clegrg @ I x* 2w = )l L °

-27~
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(4.11) [lur - ”:',” L, s Ctle,

u-u” ’

h L,
(4.12) Jju-u I < Cler oA M,a,k Y)h(]lu' -u'll + h_“/z [lu - u )
SFs S e n'l e, Bl L, *

Thus if 1 < a < 2 we have optimal convergence rates for [Ju - Uh” L and
2
flu* - v |, -
htL,

Proof. Let Eh = uh - Uh' Using hh for vh in (4.7) gives

2 2 2 /2
“1n x“Eh + f xaqF.h = x“q(uh = u)E < 1=/ Bl LzQ | x* (- w] L,

Hence (4.10) follows from (4.8) and (4.9).

For (4.11), we have by Lemma 4.1 and (4.10),

2 "2 2 2 2
C(k,cl)hu g x"zh =lle ll < ciegrg @ llu - ull i

For (4.12) we use a Nitsche-type argument. Let 2z be the (unigue) solution of
a a . 5 a
“fx 2')' + ¥ gz =y = U on (0,1) with =z(l) = 0, Yim x z(x) = 0. Then

h
x>0+
ﬂxaz“ﬂ i < clg,a) Yju - Uhﬂ o By (4.4),
2 2

”u = Uh” iz = f x"2' (ut - Uﬁ) i f x“qz(u = Uh)

a ) DR ] 1 a
= f x (2t - Lh)(u - Uh) + f x gz = zh)(u = Uh)

o
for all 2y € Sh. By Lemma 3.2 we may choose z' € 5

h Sk—l,v-l (which is equivalent to

choosing z € ;h) such that ]lx“(z' = zg)lll j_C(M,u,k,y)h||xaz"“ L" We also have
i 2

”xa(z - zh)” - = e ”xa(z' - z£)|| where A = A(a)  is the smallest eigenvaluce of
2 Yy

2a 20
“{x" v')' = Ax" v on (0,1), V(1) =0 =v'(0). Hence

1

o= o 12 <llur = ol onllx®2ell  + on™en sl | llu = uyl
h" 5, = h' L, L, L, S

I A

c(g,M,a,k,y)h ”u = Uh” L2(”u' - U;]”L2 + ”u - Uh” L2) '

and thus for sufficiently small h
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where the last step used (4.11). This completes the proof.
We now turn to the nonlinear problem
a a
(4.14) -(xu')' = x £(x,u) on (0,1), u(l) = 0 =u'(0) .
We will assume f(x,t) is smooth as a function of x and differentiable as a
function of t, with partial derivative satisfying
)

f 2 2
¢ > 0, 3¢ (x.t) < (1 - co)xo, where XO

of
lsz (x,t)| < K, and for some
was defined in (4.5). Then one may show

o
(as in [1]) or [12] for the unweighted problem) there exists a unique solution u € Hi

to (4.14), and u satisfies

(4.15) J x%urvrax = [ x%f(x,u0x0)vix)ax
e | 2h
for all v € Ha' Similarly it can be shown there is a unique u, €S which satisfies
(- - a
- d = ’
(4.16) f x uyvydx f x f(x uh(x))vh(x)dx
°h
for all vh € S, Our goal is to estimate u - u, -
To do so we cornsider an auxiliary problem defined as follows. Let q(x) := - 2 (x,u(x))

du

o
and let w € Hi solve

(4.17) x4 x%aw = x(qu + Flx,ulx))), w(l) = w'(0) =0 .
By the assumption on f we have q > (co - l)lg and hence (4.17) has a unique solu-

= °

tion, which is clearly wu. Now considcr the problem: find a, € Sh such that for
2h

all vh €S,

(4.18) f x“vaL + ] xaqa = f x“[quv + f(x,u)vhl "

h'h h

For simplicity, let us assume 1 < a <2 and ue€ nk(l). Then by Theorem 4.1,
= - k (k)
(4.19) llu - uh" by + h|lu' - u;l|| b <ch Jlu | -

2
where C 1is independent of h. Notice that this implies

«-29-
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= k-1 (k
(4.20) llo = Sl < e ™l L

Let us finally assume f(x,t) 1is twice differentiable with respect to t, and

2 3 ; : ; :
EQ f/3t2f < K. This plus the previous assumptions yield the main result.

Theorem 4.2, Let u solve (4.14) and uy solve (4.16). Then
; ' k (k) A
”“ - u ” + h||u - u H < Ch Ilu II where C is independent of h.
h" L b L — L
2 2 2
o
Proof. For all v, ¢ S, we have for some 0<6, 6 <1,

h
5 Gy (1 = = a s - =
(4.21) [ x upvy f X f(x,uh)vh f x [qu quy f(x,u) f(x,uh)lvh
a = of af -
=[x - ) (= 55 (xau) * S= (xu+ ey - vy
2
i Q=2 ATF Bl
== ke = u) 5 Gou + 00w - v
du
a = 2
<K f x (u uh) |vh| 5
°h
We also have, for all vh €Sy
o G a -
(4.22) f X uhvh j X f(x,uh)vh

Gl ST a, = a
f x uhvh f x uhvh f x f(x,uh)\h + f x f(x.uh)vh

<4 xu(ﬁﬁ -updvy = xSy - upvy gﬁ Ceou + 0Ca = up))
Putting v, = Gh - u  dn (4.22) yields
f x“Gé(Gh = uh)' - f xaf(x,ah)(ah - uh)
= f xa(Gﬁ - “ﬁ’z = x“(Gh - uh)2 §§ (x,u, + 8u, - Gh))
> 7 x“(GL - uﬁ)z ¥ ey = 1)A; Jo i = uh)2
b g»f xu(GA < ulf')2 '

where ¢ := min(co.}), as in (4.8). Thus, by (4.21)
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3 3
a - 2 1
g g]xmé-%)ifx%“%—uw‘-ffﬂm%u%-uﬁ
1 <k f x*(u - Gh)zlah - uh|
4 - a/2 - a/2 -
: <kl - uhH Lw“x (- u) | L, 1S (w, - u) Il .
‘¥ -1 - a/2 - a/2 -
' cragtlla =Sl 1620 = Sl 1626 - wll,
b & and thus
2 a/2 - -1 -1 = 2 -
172G - wpll, < gte ™t = G, 1520 - 5l 1
2 o 2
58 and also
4 £
. a/2 - -2 -1 = 2 =
1 26, - wpll 2 0% (o - 3l 152w - 5l
, -
i Recalling Lemma 4.1, we obtain with the help of (4.19) and (4.20),
: A - o -a/2 a/2 - H2 =,
? "Uh 2 uhIIL i ”Uﬂ = ULIIL < Clk,eh (= foy, = uh)HL +|1x® =y
2 2 2 2
)
‘ -a/2 - 2 -
se 2 - Gy 1P - gl
: < Ch—a/2h?k—1 “u(k)’|2
t — L
f Thus,
o -wll, +nlle =wll  <lo-wll, +nllu -wll  +lfo ~ull  +[u -l .
h L2 h L2 - h L2 : h L2 h h L2 h h 1.2
k (k 2k-1-a/2 (k 2
s la™ 4 en® T2 00 2
| 2
; <o fla® ) a+ BTV2 Y
£ 2 2
?
{ and the proof is complete, since k > 2 and 1 < a < 2.
13 - - -
i Finally, here are some numerical results. The Ritz-Galerkin procedure was
i programmed and tested on the three nonlinear problems which follow. The mesh was taken
:
to be uniform with mesh width h, and Sh was taken to be C2 cubic splines
(k = 4, v = 3). de Boor's package for calculating with B-splines [3] was used to

handle the spline manipulations. The nonlinear problem (4.16) was tackled with Newton's
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method and an initial guess of 0 for the solution. The integrals involved in the
linear problems to which Newton's method leads were evaluated with a composite Gaussian

quadrature rule using 5 points per interval. The iterations were judged to have

converged when the residual was about at the unit roundoff level (which is roughly 10_18

in double precision on the Univac 1110). The errors in the L2 and L norms were
then estimated by an evaluation at 40 equally spaced points per interval. In the

-5
tables we present the error (the notation .1734(-5) means .1734 x 10 "), the rate,

which is defined by ]og(c(hl)/e(hz))/Iog(hl/h?)), and an cstimate of the constant C

et | , ¢ defined by ¢ = ] i ||u“"
P

p=2 and p = «. For each cxample Hu(lv?l|L was determined analytically and
o

in the inequality ||e||L <Ch )ilL :
p P

lell |
P

(iv) : ; ; . Bk : :
”u ” i was determined by numerical integration, specifically, 48-point Gaussian

quadrature.
64 u
Example 1. a = 1, f(x,u) = = 20 ©
; e . F J 2 (iv) . S
The solution is u(x) = 2 log 7 ~ 2 log(8 - x ). We have Hu I]I = .6198,
”u(lv)”I = 1.130. Each case converged in 4 iterations.
‘eo
h elly, rate C2 ||o” 1 rate C,
2 ©
1/4 L1734 (-5) .716(-3) L3388 (-5) .768 (-3)
1/6 .3745(-6) 3.78 <783((=3) .7806 (-6) 3.62 «B95(=3)
1/8 .1235(-€) 3.66 .816(-3) 2805 (~6) 3.56 .102(-2)
1/10 .5180 (-7) 3.89 «836/(=3) «1:237:(=6) 3,67 «109/(=2)
1/12 .2536(-7) 3.92 .848(-3) 6266 (=7) 35173 L115(-2)
1/16 .8174 (-8) 3.94 .864 (-3) . 2106 (=7) 3479 +122(=2)
1/20 .3384 (-8) IS .874(-3) .8945 (-8) 3.84 <127 (-2)
u

Example 2. a =1, f(x,u) = e .
This is a well-known example (see, e.g. [13])). A solution (not unique) is

u(x) = 2 log(l + B) - 2 loyg(l + sz), where B := 3 - 2/2. The theorctical results
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do not include this example ( %E has the wrong sign), but no convergence difficulty

was encountered. Each case required 4 iterations. We have ”“(lV)IIL < .5685,

: 2
(iv) .
[lu i L .7065.
h ||e” L2 rate C2 ”elle rate C,

1/4 .1565(-5) .705(-3) .3530(-5) .128(-2) i
1/6 .3154(-6) 3.95 .719(-3) .7465(-6) 3.83 .137(-2) F*
1/8 .1007 (-6) 3.97 .726(-3) .2403(-6) 3.94 .139(-2) é
1/10 .4150(-7) 3.97 .730(-3) .9904 (-7) 3.97 .140(-2) 3
1/12 .2010(-7) 3.98 .733(-3) .4791 (-7) 3.98 .141(-2)

Example 3. a = 2, f(x,u) = 3/3 + (u + % /§x2)5.

This is a modification of an example in [13]. The solution is

1/2

2 = : :
u(x) = (1 + x /3) -3 x2/2. Once again, thc theory does not cover this example,

but no numerical difficulty was encountercd. Each case took 6 iterations. We have

(iv) < (iv)
fla™""l % .8482, [[u™"ff, =1.
2 ©
h Ile” Lz rate ¢, He”L°° rate C, i
i 4
1/4 . 2107 (-5) .636(-3) .5237(-5) .134(-2) :
1/6 .4076(-6) 4.05 .623(-3) <1075 (-5) 3.91 <139 (-2)
1/8 .1269(-6) 4.06 .613(-3) .3416(-06) 3.99 .140(-2) 1
1/10 .5153(-7) 4.04 .608(-3) .1400(-6) 4.00 .140(-2)
1/12 .2473(-7) 4.03 .605(-3) .6750(=7) 4.00 .140(-2) !
!
3
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